๐ŸŽฏ ResNet50 ImageNet Classifier

Trained from Scratch on ImageNet-1K | 75%+ Top-1 Accuracy

1000 classes โ€ข 25.6M parameters โ€ข 98MB model

๐Ÿ“Š Dataset

1.28M training images

1000 ImageNet classes

๐ŸŽฏ Performance

75-77% top-1 accuracy

92-94% top-5 accuracy

โšก Architecture

ResNet50 (Bottleneck)

25.6M parameters


๐Ÿ“ธ Upload an Image for Classification

๐Ÿ“Œ Try these example images
1 10

๐Ÿ’ก Tips for Best Results

  • Upload clear, well-lit images
  • Works best with centered objects
  • Supports 1000 ImageNet categories
  • Processing time: ~1-2 seconds

Model Architecture

ResNet50 trained from scratch (no pre-trained weights) on ImageNet-1K

Training Configuration:

  • Optimizer: SGD with momentum (0.9), weight decay (1e-4)
  • Learning Rate: Cosine annealing with warmup (0.1 โ†’ 0.0005)
  • Augmentation: AutoAugment (ImageNet), RandomErasing, Mixup
  • Precision: Mixed FP16 with gradient scaling
  • Epochs: 75 with early stopping

Architecture Details:

Input (224ร—224ร—3)
  โ†“
Conv1 (7ร—7, stride=2) + BN + ReLU โ†’ 112ร—112ร—64
MaxPool (3ร—3, stride=2) โ†’ 56ร—56ร—64
  โ†“
Layer1: 3ร— Bottleneck โ†’ 56ร—56ร—256
Layer2: 4ร— Bottleneck โ†’ 28ร—28ร—512
Layer3: 6ร— Bottleneck โ†’ 14ร—14ร—1024
Layer4: 3ร— Bottleneck โ†’ 7ร—7ร—2048
  โ†“
Global Average Pool โ†’ 1ร—1ร—2048
Fully Connected โ†’ 1000 classes

Project Links

Citation

@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={CVPR},
  year={2016}
}

๐Ÿ’œ Built with Gradio โ€ข Trained on AWS EC2 โ€ข Deployed on ๐Ÿค— Hugging Face Spaces

Model trained from scratch achieving 76.12% top-1 accuracy on ImageNet-1K