๐ฏ ResNet50 ImageNet Classifier
Trained from Scratch on ImageNet-1K | 75%+ Top-1 Accuracy
1000 classes โข 25.6M parameters โข 98MB model
๐ Dataset
1.28M training images
1000 ImageNet classes
๐ฏ Performance
75-77% top-1 accuracy
92-94% top-5 accuracy
โก Architecture
ResNet50 (Bottleneck)
25.6M parameters
๐ธ Upload an Image for Classification
๐ Try these example images
1 10
๐ก Tips for Best Results
- Upload clear, well-lit images
- Works best with centered objects
- Supports 1000 ImageNet categories
- Processing time: ~1-2 seconds
Model Architecture
ResNet50 trained from scratch (no pre-trained weights) on ImageNet-1K
Training Configuration:
- Optimizer: SGD with momentum (0.9), weight decay (1e-4)
- Learning Rate: Cosine annealing with warmup (0.1 โ 0.0005)
- Augmentation: AutoAugment (ImageNet), RandomErasing, Mixup
- Precision: Mixed FP16 with gradient scaling
- Epochs: 75 with early stopping
Architecture Details:
Input (224ร224ร3)
โ
Conv1 (7ร7, stride=2) + BN + ReLU โ 112ร112ร64
MaxPool (3ร3, stride=2) โ 56ร56ร64
โ
Layer1: 3ร Bottleneck โ 56ร56ร256
Layer2: 4ร Bottleneck โ 28ร28ร512
Layer3: 6ร Bottleneck โ 14ร14ร1024
Layer4: 3ร Bottleneck โ 7ร7ร2048
โ
Global Average Pool โ 1ร1ร2048
Fully Connected โ 1000 classes
Project Links
- ๐ GitHub Repository
- ๐ Original ResNet Paper (He et al., 2016)
- ๐๏ธ ImageNet Dataset
Citation
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={CVPR},
year={2016}
}
๐ Built with Gradio โข Trained on AWS EC2 โข Deployed on ๐ค Hugging Face Spaces
Model trained from scratch achieving 76.12% top-1 accuracy on ImageNet-1K